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Evolutionary strategies of optimization
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Evolutionary algorithms have proved to be a powerful tool for solving complex optimization problems. The
underlying physical and biological strategies can equally be described by adBg®oequation. The prop-
erties of the dynamics of optimization are encoded in the spectrum of the Hamiltonian. Analytic solutions and
convergence velocity of the dynamics are calculated and compared with simulations of the corresponding
algorithms. The connection between physical and biological strategies is analyzed. Mixing both strategies
creates a basic class of evolutionary algorithms improving robustness and velocity of optimization.
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[. INTRODUCTION distribution Py(x) is the Boltzmann distribution. Therefore
we will call the strategy representing this class of algorithms
The idea of solving optimization problems by means ofBoltzmann strategy6]. Nearly all other evolutionary algo-
evolutionary principles is a noteworthy example demonstratfithms use a selection scheme adopted from the natural se-
ing the fruitful confluence and interaction of various fields of lection of biological systems. The class of algorithms using
science. Optimization is not only an important technologicalParwinian selection will be referred to d3arwin strategy
guestion, it is a fundamental principle governing the dynami 6J. ) _ o )
cal laws of physics and the processes of biological evolution, ' this article, an optimization problem shall be given by
Knowledge of natural systems becomes a valuable source §f€ duestion of determination of optiméminima and
inspiration for constructing and investigating algorithms][nax'ma hoff_a realf—valu_ed _functlonIIZ_.X—>R, also called
solving very complex optimization problems at a new tech- €SS The fitness function is a quality measure quantifying
nological level. theT goal of a given problen(e.g.., optimizing the costs of
aﬁundlng a network Complex optimization problems have a

q Thle pasttde}cadt(_a, _in tparticlular_,thwastrr]netlrked tk))y a ﬁre igh-dimensional search spae¢e (e.g., the space of a 24
evelopment of optimization aigorithms that may be co ec'points network consists of # graphs, more than the

tiveI_y referred to a$_volutionary _algorithm,syvhich consi;t guessed number of particles in the Univésmaking the

of simulated annealingl], evolution strategie$?], genetic  zhjication of classical optimization techniques infeasible.
algorithms|3], evolutionary programming4], and genetic  x may be discrete or continuous, but for the analytic descrip-
programming5]. _ tion we assum&=RY and a continuous time. Then the dy-

The rich variety of representatives seems to suggest th@famics of an evolutionary strategy can be described by a
there is a long way to go to unification, but in fact, all of differential equation.
these algorithms are characterized by two general dynamic At first sight there seems to be no connection between the
properties. The dynamics of an evolutionary algorithm mayBoltzmann and Darwin strategy. Nevertheless, the fact is as-
be regarded by a motiax(t) in a search spack visiting all  tonishing that both strategies can equally be described by a
global optima of a functiorF(x) on X, and we can realize Schralinger equatiorf7]. We will show that the spectrum of
that the motiorx(t) is not deterministic: there is a stochastic the Hamiltonian given by the optimization problem deter-
generation ofalternativesof further motion. The realization mines the properties of the evolutionary strategy. For unimo-
of one of them takes place by amssessmentelated to dal fitness landscapes we are able to calculate exact solutions
F(x). All evolutionary algorithms realize the processes oft0 the optimization dynamics. To compare the results of the
generation and assessment of alternatives,matationand  Strategies with evolutionary algorithms we construct algo-
selection The stochastic nature of these algorithms require§'tth that nearly exactly realize the dynamics of the Boltz-
a probabilistic description. mann and Darwin strategies. _ _

The complete description of a stochastic system is given 1€ unified description of both strategies by a Sehro
by the probability distributiorP(x,t) of its statex at a time dinger equation Iga}ds to the_fact that the Boltz.mann strategy
t, characterizing the density of searchers of an ensemble, ?ecomes a Darwinian one with at(ansformed fitness function
the probability to find one of them ak(t). The dynamics of 8]. The properties of both strategies complement e_ach other
P(x,t) is considered to be apptimizationif any (or nearly ~ ©N the same fitness landscape. Mixing the strategies gener-
any) initial distribution P(x,0) converges to a stationary dis- ates a d'ffefe”t class of Evolutlonary Algorithms, ‘!"“”‘ed
tribution Py(x)=Ilim,_.P(x,t) that is concentrated around strategy which TQ‘hOWS a _remar.kable improvement in robust-
the global optimum of (). ness and velocity of optimizatig6—9].

The evolutionary algorithms may be divided according to
their physical or biological origin into two basic classes.
Simulated annealing algorithms are motivated by thermody- The first and simplesevolutionary strategyis known
namic systems minimizing the free energy and the stationarfrom literature as “simulated annealing.” This strategy was

Il. BOLTZMANN STRATEGY
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first discussed in the form of the Metropolis algoritfhitO]. Hermitian polynomials. Apart from a constant, the same re-
Following Kirkpatrick et al. in [1], we are interested in the sult is obtained in the cas®<0. A collection of formulas
analogy between equilibrium statistical mechanics and thisan be found in the Appendix ¢8].

algorithm. If we simplify our investigation to the case of a  The velocity of an algorithm answers the important ques-
fixed temperature then, according [8], the dynamics is tion of how fast the algorithm reaches a desired fitness value

given by the Fokker-Planck equation or finds an optimum. We define a first velocity® on the
fitness landscape and a second off@ in the kth direction
ip(; t)=VD.[VP+ BVFP]=DAP+DV(BPVF) of the search space. The velocities are given by the time
at L 1

derivative of the mean values of the fitnelé(si) and the
1) vectorx,, respectively. With respect to E¢l) we obtain
where D is the “diffusion” constant, 8 is the reciprocal d
temperature, and is the state vector. vM=— gi{F)=DB(VF-VF)—D(AF), (8)
The ansatz
_ JP(X,HF(x)dx

0 y(X,t), ®) (P =—Tpxnax

P(§,t)=exr{ - %

taken together with the separation of the time and space varnd
ablesy(i,t) =exp(— ét)(ﬁ()Z), leads to the eigenvalue equation 2 d
. .. . vi”' =~ (X0 =DB(VX- VF). C)
DA #(X) = V(X) h(X) = = eyp(x), ()

wheree is the eigenvalue and The velocityv'’ depends on the curvature and the gradient

of the fitness. In the special caE8 we are able to explicitly

. B B calculate the velocities with; >0, i.e.,
V(x)= 5 DVF-VF—5DAF (4) c
1H=_"< _
v = Ezexq €2t) y (10)
is the redefined fitnesé. This equation is known from quan- BCo
tum mechanics as the stationary Salinger equation. On
the assumption that the operator in E8) is bounded, we 2)_ 1 exp(—ext) (11)
obtain a discrete spectrum leading to the solution VKT ==Xl — at).
BakCo

[

2 c zﬂ-()?)exp(— et) ®) _It is interesting to note f[hat only the first two e?genvalues are
ey " important to the velocities and that both velocities go to zero
in the limit t—o. The other case&;<0 produces a more
In [8] we discussed the necessary conditions for the convecomplicated but similar resulsee[8]). For initial distribu-

gence of this sum. The expression for the equilibrium distri-tion P(x,0)=8(x—X,) in which all searchers are concen-
bution trated in one poink,, we calculate the velocity

P(x,t)= exp[ - gF(i)

> > d
PolX) = CoexH = BF(X)] © vM=7 aD(Baxi-1l)exp—a,AD2t) (12

i=1
corresponds to the eigenvalée=0. A complete discussion

of this fact including the construction of the Liapunov func- gnd the mean fitneg¥) as well as the squared mean fitness
tional is contained if8]. Thus the equilibrium distribution is  yariancecs?,

concentrated around the optimum since the minimum of

F(x) is related to the maximum oPy(x). In the limit d 9 )

t—oo the distributionP(f,t) converges to the equilibrium <F>:me+i21 ﬁ(ﬁaixo—l)exq—aiBDZt), 13
distribution and the strategy successfully terminates at a dis-

tribution localized around the optimum. Consequently, the 1
Boltzmann strategy fulfills the minimal requirement to be an o2 :<F2>_<F>2:ﬁ2 ((2x3Ba;—1)
evolutionary strategy. B i=1
f As the first calculable case we consider the unimodal % (e~ 2DaiBt_ g~ 4Daift) | 1 _ o203t (14)
unction
d which later on will be compared with simulations in Sec.
L )2 IVA
F(0=Fmint 5 2, ai(X=x)". () -

. . . . I1l. DARWIN STRATEGY
For a;>0 we get the simple harmonic oscillator that is

solved by separation of variables. With respect to the dimen- In the following we will discuss a biological model of
sion of the search space the eigenfunctions are products efrolution known as the Fisher-Eigen model. To illustrate this
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model we switch to the chemical reaction picture. A searcheboundary. Due to the boundary conditions an additional re-
having a fixed fitness can be regarded as a spe¥iand striction appears and the spectrum of the operkitds dis-
another searcher having a different fitness as sp€ridfius  crete.

the process of mutation is the reactidr-C described by a As in Sec. Il we are interested in the velocities of the
diffusion term. Then the reproduction process is given bystrategy. In practice we need only the first velocit{?),

F . - . . .
A—2A with the fitnessF of A as a transition rate. The which, with respect to the Darwin strategy5), is given by

selection pressure is realized by the demand that the number q
of individuals in the population be constant. The reproduc- vW=— d_<|:>:<|:2>_<|:>2_D<A|:>_ (20)
tion and selection term was first introduced by FishEt] t
and Eigen12] to become known as the Fisher-Eigen equa-
tion. If we add diffusion to the Fisher-Eigen equation andThe use of an ensemble of searchers has the great advantages
take into account the minimization of the fitness functionthat the velocity () reflects the main properties of the strat-
then the Darwin strategy is defined by egy and this velocity can easily be calculated during the
search process. Furthermore the knowledge of the magnitude
J . . R . v® can be used to optimize the search parameters. In the
S POGO=F)=FX)IP(X,)+DAP(X). (19  first approximation we may suppose the velocity to be con-
stantv M=y For theD parameter we get
By using the ansatz
_(F=(F)?
~ (AF) (AF)”

P()Z,t)=exr{ J;(F}(t’)dt’ y(X,t) (16)

Hence a value oD below the critical value

(F)— (FY
Dcritzw

we obtain

SV =—Hy(X)=[DA-F(X)]y(xt). (17
still guarantees progress. Now we have to discuss the con-
The separation of time and space variablescrete example of a quadratic fitness functi@in Using the

y(X,t) = y(X)exp(—et) reduces Eq.(17) to the stationary general solution(19) together with the conditiom;>0, we

Schralinger equation obtain the expansion
- - . d
_6i'r//i(x):DAwi(X)_F(X)l/li(X)u (18) U(l): 2 % 1026 87(52750)t+0(e7(54752)t)
i=1 2 Co 2 '

where ¢; are the eigenvalues anﬂ\(i) are the eigenfunc- (21
tions leading to the complete solution
On the basis of this velocity, the Darwin strategy can be
- et 2 compared with the Boltzmann strateff}.
y(X't):Ei aie Ti(x). (19) For the initial distributionP(x,0)= 8(x—x,) we obtain
simple explicit results for the velocity

The eigenvalue of the Darwin strategy admits a nonzero d

value in contrast to th'e Bpltzmann strategy. Howevgr, with v(l)=2 JDa

respect to the normalization of the solution we obtain only = !

relative eigenvalues; — €, reflecting the fact that a shift of

the fitness functiongs)hould not influence the dynamics. For y V2a;(xo)sinh(t\2Da;) — a;Dcoshty2Da;)
the quadratic fitnes&’) havinga;>0 the problem is exactly =

solvable for any dimensiod and the solution is very similar coshf(ty2Da;)
to the Boltzmann strategy. Fa; <0 we obtain a different (22
problem known from scattering theory. Now we have to deal

with the problem that the operatéf is unbounded and thus and for the expectation value of the fitné3

the spectrum is continuous. We can repair this defect by

restricting the search space to a compact subspace. In prac- d
tice the search space is always bounded and we can choose a (F)= Fmin+2
natural compact subspace by the demand that the fitness =1
function (7) admits only positive values. This leads to the ai(xg)2
restriction of the search space to the intefvab,b] in each e | s
direction, whereb= 2F ./ |a;| fulfills the positivity con- 2cost(ty2a;D)
dition. Further, we have to introduce the boundary conditions

for the operatoH defined on this compact search space. Thel'he comparison with the numerical results will be discussed
most natural choice is to let the solution vanish on thebelow.

1
5\/2aiDtan}‘(t\/2aiD)

. (23
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IV. SIMULATION OF THE STRATEGIES 02
USING STOCHASTIC ALGORITHMS Is
A. Description of the Boltzmann strategy
by Langevin equations 3s 6s
We shall begin with the simulation of the Boltzmann 9
strategy(1) by using two different approaches. At first we P o1
consider the transition probability
1 if F(y)>F(x)
= F(y)—F(x ) 24
Pry ex;{ - M) otherwise, (24)
"0 s 4 2 0 2
whereT is the temperature. By means of the standard theory (@) h B .
of master equationjsl 3] we deduce from this expression the
dynamics of the Boltzmann stratedy). 04
Alternatively, we can reproduce E(.) by the strong cou-
pling between the Fokker-Planck and Langevin equation. For
that purpose we simulate Brownian particles in the over- 03 |
damped case driven by the gradient of the fitness function
F()Z) and the mutation is given by Gaussian white noise. All
assumptions put together lead to the Langevin equation P o2
d.
ax=—DBVF+ V2DE(t), (25 01
where&(t) is the noiseD is the diffusion constant, anél is
the inverse of the temperature. The conditions on the noise 0.0 p 1 > 0 5
are expressed by ) - - '
(&(1))=0, _ . o
FIG. 1. Time evolution of the distributionP(x,t) of

N=10 000 Brownian particles simulating the Boltzmann strategy.
Fitness function: parabola\t=0.01, Ax=0.01, D=0.1, and(a)
B=10 and(b) B=1.

(E(t)E))y=06(t"—1).

According to[13], the behavior of Eq(25) can be described

by the Fokker-Planck equatidd) in an equivalent way.
We prefer the second ansatz to realize the Boltzmaniergence process to the optimum. Thus we compare the the-

strategy(1) in the simulation. This simulation of the Lange- oretical results and the simulations of the mean fit{gss

vin equation is a well-known problem in stochastics and weand the mean fitness varian@e?) — (F)? as shown in Fig. 2.

will use the discretization scheme This nearly exact agreement between simulations and theory

X(t+1)=x(t)+ y2DAt&(t)

F(x(t)+Ax)—F(x(t)—AXx)
—op= 2AX ( A,

(26)

whereAt is the time step andx is the box length.
Furthermore, we have to compare the dynamics of this
algorithm with the analytical solution to the Boltzmann strat-
egy (1). Two important classes of fitness landscapes are
given by uni- and multimodal functions. Thus we consider
the parabolaF (x)=x? with one minimum atx=0 and the
double  well F(x)=0.16+0.027&?(0.166 6%—0.9)
X(0.166 6%+ 0.8) with two minima ak~ — 3.4,3.8. One of
the most interesting pieces of information is the time evolu-
tion of the probability distribution pictured in Fig. 1 for mini-
mization of the parabola. This figure shows the distribution
of the populationN=10 000 at different times. Figure(d
visualizes the behavior at the temperatiire 0.1 (3=10),
whereas (b) represents the distribution fdr= 1. According FIG. 2. TheoreticalPDE) and simulated time evolution of mean
to Secs. Il and 111, the investigation of the mean fitness is keyfitness and variance of the Boltzmann strategy. Fitness function:
information of the dynamics in order to understand the conparabola,3=1,2,10, and other parameters as in Fig. 1.
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0.06 ‘ The next more complicated type of a fithess landscape is
the double well having two minima separated by a maxi-
mum. We use the same parameters as before and start the
ensemble at the maximum. To compare the simulation with
the theoretical solutions we integrate the partial differential
equation(PDE) (1) numerically. Figure 3 shows good agree-
ment between the simulated and theoretical distribution
P(x,t) for different temperatures. For high temperatures
(B=1) the searchers are spread out without localization
around the minima, which leads to an increasing mean fit-
ness(Fig. 4). Low temperatures§=20) force the concen-
tration of searchers to the nearest miniffdg. 3 and the
mean fitness decreases monotonically to a stationary value.

This temperature dependence of the behavior of localiza-
tion in finite times leads to the fact that the Boltzmann strat-
egy carries out an efficient search at low temperatures only.
The tendency to get trapped in local minima increases by
cooling. The simulated annealing approach addresses this
problem by means of a cooling scheddlét), which care-
fully decreases temperature. But the usefulness of a certain
schedule strongly depends on the concrete form of the fitness
landscapd 14]. Another way to reduce sticking in local op-
tima is offered by mixing strategigSec. \j with the advan-
tage that there is no need to introduce exogen parts of the
dynamics such as a cooling schedule.

0.04

0.02

0.06

0.04 ¢

0.02

B. Description of the Darwin strategy

0.00 o5 . 8 X ion-di i i
—10 _5 0 3 10 by reaction-diffusion algorithms

(b) X In this section we simulate the Darwin strateg@$) using
a stochastic algorithm to compare the theoretical model with
FIG. 3. Time evolution of the distributionP(x,t) of  an algorithm accessible for application. Similar to the discus-
N=10 000 Brownian particles simulating the Boltzmann strategysjon at the beginning of Sec. Ill we introduce specieand
compared with the theoretical solutiofBDE). Fitness function: y having fitness valueE(x) andF(y), respectively. To re-
double well,At=0.1,Ax=0.01,D=0.1, and(@ =1 and(d) 8 jHjize the reproduction and selection processes we consider
=20. the transitions

can easily be deduced from Eg4.3) and (14) using the
parametera=2D=0.1x,=—5, and the corresponding “(_X))‘ (xx), f(x)>0
values. Only for low temperatures do we obtain an aberration (y,y), f(x)<o0,
for the mean fitness variance explained by the low popula-

tion size. with the fitness proportional rate

(X,y) (27)

P FIG. 4. Simulated time evolution of the mean
10 B=10 ‘ ‘ fitness and variance of the Boltzmann strategy.
0.20 B=1. Fitness function: double well3=1,5,20, and

------ B=5.0 other parameter as in Fig. 3.
015 [N\ ———- B =20. .
<F> B =20.0

N

0.10 | N T e L 1
\\\

0.05 ‘ oo
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F60:=(F) = F(x), @8 %P(x,t)=f Wp(X—r;r)P(x—r,t)dr

leading to the obvious property of population size conserva-

tion. The solution to Eq(15) is a distribution of searchers

over the continuous search space. To compare the algorithm - P(th)f Wp(x; —r)dr (33

and the partial differential equatigt5) we have to consider

the dynamics of the densitlp(x) of the speciex with re-  describes a process with symmetric transition rates. Assum-
spect to the transition®7) described by the master equation. ing that only small jumps occur and that the solution
In the following we consider only reactions of a pair of spe-P(x,t) also varies slowly witlh, it is possible to deal with
cies, which is also used in the computer algorithm later onthe shift fromx to x—r in the first integral in Eq(33) by

This two-particle picture of the selection and reproductionmeans of a Taylor expansion up to second order where the
processes was suggested by Schimansky-Géfgrand we  term with the first derivative is neglected by the symmetry of
thank him for many discussions to clarify the questions. ToW, . If we set

establish the master equation we have to divide the transi-

tions (27) into two parts, i.e., los®V~ and gainwW*. We :f 2 . _

express the transition rat®8~ andW* by 2D r*Wp(x;r)dr=const

WH(x,%:y): = W((X,Y)—(X,¥)), then the diffusion equation is obtaingti3]. With respect to
the assumption of sufficiently small stepsve have unified
W™ (X,X:y): =W((X,y)—(X,Y)), (29) the mutation and the selection process in one equation. But
we note that the requirement of small steger the mutation
leading to the master equation for the two speciesdy, process leads to a different realization of mutation and selec-

tion in the algorithm. Furthermore, it is to be noted that the

d N , diagonal termW(x,x) of the rates can be chosen arbitrarily.
EP(x,y,t)zf (W (X y)P(X,y) The simulation of the master equation is a well-known
) ) problem in the theory of stochastic processes. We use the
—W7(x,x;y)P(x,y)]dx waiting time distribution of Eq(30) to establish a stable and
effective algorithm of the evolutionary procdd6-1§. The
+f [W*(y,¥:X)P(X,Y) main idea of the algorithm is very simple. The dynamics of
the process can be split into two parts. At first the population
— W (¥,y:X)P(x,y)]d¥. (30) remains unchanged for a certain time, the waiting timat

the current state. After time steps the population is turned

Now we have to determine the transition rates with respect t§1t0 @ new state. If we know the distribution of the waiting
the processes of reproduction and selection. For that purpo$éne 7, we only need to simulate the effective changes of the
we introduce intermediate states denotecbBy integration ~ System representing the master equation. Indeed, this is ex-
over these states we can deduce the correct processes. B&tly the method of evolutionary algorithms to execute the

the rates we assume evolutionary process. But the common simulation scheme of
evolutionary algorithms pays no attention to the time scale of
WH(X,X;y): =W ((X,y)—(X,Y)) the process, resulting in the inability to compare the dynami-

i cal behavior of the evolutionary algorithm with analytical
O(=f(x)+f(y)0(f(y)], results of the Darwin strategy.
(31) In fact, it is easy to extend the common simulation
scheme to an algorithm respecting the real time scale of the
W (X,%y): =W ((X,y)—=(X.y)) evolutionary process. Solving tliiest passage timgroblem
] of Eq. (30) with initial and boundary conditions
= 3(x=Y)[[FO[O(=F(x))+T(y)O(F(y)],

where the other rates can be derived by the interchange of _ o S
x andy. The complete derivation of the Fisher-Eigen equa-we obtain the waiting time distributiofi9,2]
tion

= 8(x=y)[[(X)

P(x,00= 8,4, P(x,t)=0, x#X, (34

1% 1 T
9 p(T)ZE[l—P(X,T)]Zmex —m . (35)
2t PO =[(F)=FO)IP(x), (32
The waiting time between two changes is exponential dis-
with respect to the master equatit80), can be found in the tributed and(7) is the mean waiting time.

Appendix. By adding a symmetric transition raté, with The mutation term of the Darwin strategy describes a dif-
fusion process. To simulate such a process we have to guar-
Wp(X,Y)=Wp(Y,X)=Wp(Y;r), r=x—y antee that one mutation stepis small in comparison with

the size ofP(x,t)>0. The mean value of a diffusion step is
to the loss and gain terms, we obtain the mutation proces§ )=+2 DAt; thus we must choose the maximal time scale
leading to the Laplacian term in E(L5). According to[13]  At,,,c>At of the mutation step in such a manner that
(p. 214, the master equation remains sufficiently small. Diffusion is a continuous process,
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whereas selection is discrete. Thus we execute in every stef  ¢.010
a mutation and selection having the réte) —F(x). To en-

sure that the mutation steps small we set the mean waiting

time between two steps of algorith{m)<At.x. The sto- 0.008 |
chastic dynamics of diffusion is given by a Gaussian muta-
tion

0.006 |
X(t")=x(1)+2D(t—t')¢, (36) P

with the normal distributed random accessianThe selec-
tion process can be modeled by a birth-death process. A
randomly chosen individual x dies if the rate 0.002 |
W= (F)—F(x) is negative and will be reduplicatedW¥; is
positive[21]. To keep the population siZ¢ constant another
randomly chosen opponet must be reduplicated or die. 0.000 Exemsnoes
This process can be considered as tournament selection hav X
ing the rate|W|.

The selection step will be executed if a uniform random FIG. 5. Time evolution of the distributionP(x,t) of
number is N=10 000 individuals simulating the Darwin strategy compared

with the theoretical solution€PDE). Fitness functionx?, D=0.1.

0.004

zZ<Wg, ZE(O,%),

with a mean waiting timé r) fulfilling

egy (PDE) is indicated by the solid line. The circles, squares,
and crosses denote the density of the population

(N=10 000) at different times. Without any doubt, the evo-
1 lutionary algorithm realizes nearly exactly the dynamics of
W,Mmax). the Darwin strategy. Also, Fig. 6_emphasizes this fact_for the
time dependence of the mean fitness of the population. For

The choice of the fixed value mak(,) instead ofw, syn-  Small population sizesN<1000) the stochastic fluctuations
chronizes both time scales 1/maM{) and At,,,. Such a are still visible and go to zero for larger populations. The
choice is equivalent to the introduction of diagonal termsDarwin strategy describes the dynamics of the population
into the rates that leave the master equation unchanged. L&fthout taking into account fluctuations, but we can see that
us summarize one generation of the algorithm by the follow-2 Population ofN=10 individuals shows already a behavior
ing scheme using uniform random numberghe exponen- duite similar to the Darwin strategy in the case of a parabolic

tially distributed numberr, and the normally distributed fitness function. _
numberé for N steps: For the multimodal fitness landscape of the double well

we also found good agreement between the solution to the
(7) Darwin strategy(PDE) and the simulation oN=10 000 in-
U=t dividuals (Fig. 7). (The solution to the PDE was found by
numerical integration. The mean fithesgFig. 8 shows
i=z,e{1,... N}, slightly more fluctuations, but the main features of the PDE

and the evolutionary algorithm are still the same.
X(t")=x(t)+y2D(t—t")¢,

(7)<min

(oi) if 2,<|Wy=F(x)—(F
Z€e ’<T> L4} | sT (X) < >|!

j=zze{l,...i—-1j+1,... N},
y=X, Wg>0
x=y, W<O0.

Now we compare the dynamics of this algorithm with the
analytical solution to the Darwin strated$5) for two dif-
ferent fitness functions: the parabol{x)=x? and the

double well f(x)=0.16+0.027&?>(0.166 6%
—0.9)(0.166 6%+ 0.8), which are equivalent to the case of
the Boltzmann strategy. Of course we use the same charac- t

terization of the strategy explained in Sec. IV A. The time
evolution of the probability distribution of the population is  FIG. 6. TheoreticalPDE) and simulated time evolution of the
represented in Fig. 5. The exact solution to the Darwin stratmean fitness of the Darwin strategy. Fitness function:
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0.008 ‘ ; ‘ J . -
— PDE EP(x,t)=(Dl+DZ)AP(x,t)+,8D2V(PVF) (37)
ot=25

o006 | o0 X ] +9[(F)=F(X)]P(X,t). (38

For y=0 this dynamics reduces to a pure Boltzmann strat-
egy and for8=0 we obtain a Darwin strategy. In the case of
D,B8=1 andD;+D,=D the corresponding equation can be
interpreted as a mixing of a gradient strategy and a Darwin
strategy. We found in the simulations that this mixing is an
effective and fast algorithm. In the following we simplify the
equation by the setting3,=D andD;=0. The mixed case
may be treated by means of the ansatz

P o004 |

0.002 |

0.000 Mmnoenmetiiooeedins
X - t 1 - -
POxt=exg y | (F)dt'—5BF(X)|y(Xt), (39
0
FIG. 7. Time evolution of the distributionP(x,t) of

N=10000 individuals simulating the Darwin strategy comparedleading to

with the theoretical solutiondPDE). Fitness function: double well, d

D=0.1. > c. >

gy *O=[DA-WX B, 7)]y(x.1), (40)

The parabola and double well represent the main features ) DB D B2
of a general fitness landscape: the existence of local optima W(X;B,y)=yF— 7AF+ T(VF) -(VF),
and the transition between two optima. For both cases we
could find good agreement between the dynamics of the Dar-
win strategy and its stochastic realization: the evolutionary
algorithm. Within the range of this agreement we are able to - -
sagy that the analytical regsults foundgfor the Darwin strategy WX 8, y=0)=V(x),
are valid for the evolutionary algorithm too. In this sense theynere the explicit solution is given by the same expression
Darwin strategy becomes an important tool for the analyticat1g) with the eigenfunctions of the problem
investigation of evolutionary algorithms.

W(x; 8=0,y=1)=F(x),

0=DA ¥ (X)+[&—W(X; B,7)]¢(X). (41)

The linearity of the differential equation leads to simple re-

lations between the solutions and velocities. For example,
In our paper[8] we analyzed the Boltzmann strategy asthe velocity for the Boltzmann strategy can be added to the

well as the Darwin strategy in detail in order to show thatvelocity of the Darwin strategy with respect to the constant

with respect to the velocities, the strategies have oppositionaf} to obtain the velocity of the mixed strategy

behavior. Because of their oppositional advantages and dis- d

advantages it seems desirable to mix them. Furthermore, thgy)_ ~ ~ ,—\ _ 2\ /)2 ) _

dynamic equations defining both strategies contain a com- dt<F>_7(<F )=(F))+DA(VF-VF)~D(AF).

mon termDAP. We define the dynamics of a mixed strat- (42

V. MIXING OF STRATEGIES

egy by In this way the critical value ob is given by

_ y(FAH=(F)?)
St (AF)—=B(VF-VF)’

D

which still guarantees progress in the mean Ebrvalues
below this critical value,;; . Now the magnitud®.,;; can

be used to control the strategy during the evolutionary pro-
cess to adapt the parametgtsand 7.

The mixed strategy is a well-suited tool for multicriterion
optimization. Let us assume that the fitness function consists
of two contradictory partd(x)=F(Xx)+F,(x) and that
F1(x) is a more local requirement. One example of such a
situation is the network optimizatiofsee[9]), whereF ;(x)

0.88 00 200 300 400 500 would be the detour an,(x) the total length of the paths.
Another example is the “democratic” representation intro-
duced by Ditte422]. A well-designed strategy may use the

FIG. 8. TheoreticalPDE) and simulated time evolution of the Boltzmann strategy for local optimization &f;(x) and the
mean fitness of the Darwin strategy. Fitness function: double wellDarwin strategy for global optimization d¥(x). By using

<F>
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the mixed strategy one is able to respect the structure of the ACKNOWLEDGMENTS
local and global requirements of multicriterion problems.
Mixing not only improves the convergence velocity but
also reduces the tendency of the Boltzmann strategy to g
caught in local minima. Since the Darwin strategy is able toﬁ
escape from local minima by a tunnelinglike process and the
Boltzmann strategy works very well on landscapes with low
curvature, the mixed strategy proceeds by an efficient search APPENDIX A: DERIVATION OF THE FISHER-EIGEN
in both regions of the landscap8]. To obtain these advan- EQUATION
tages we have to choose the coefficieptand 8 appropri-
ately. In general, the optimal search requir8s0 and
y>0. In summary, adding some amount of the “comple-
mentary” strategy is in most cases recommended. This h
already been found out empirically in an earlier wrk6].
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We consider the master equati(80). If we assume tran-
sition rates related to the transitiof®¥) for the gain and loss
31) we obtain the selection and the reproduction term of the
arwin strategy. Together with the useful abbreviations and
the one-particle distributioR(x)

VI. SUMMARY AND CONCLUSION
o _ AX):=[f(0)[O(=f(x)), B(x):=f(x)0O(f(x)),

The marvelous fact that optimization strategies adopted
from physical and biological systems allow a unified descrip-
tion by a Schrdinger equation makes the assumption of a _
fundamental meaning of optimization principles appear in a P(X)_f P(x.y)dy,
different light. This remarkable relationship between optimi-
zation and the Schdinger equation makes it feasible to the master equatio80) is obtained as
study the behavior of both strategies in detail. The differ-
ences of the Boltzmann and Darwin strategy can be under-
stood by a transformatiof) of the fitness. Hence an inves- —P(x,y,t)= 5(x—y)( f A(X)P(x,y)dXx+ B(y)p(y))
tigation of differences and similarities was simply realized t
[8]. A main characteristic of the strategy is given by the —[A(X)+B(Y)]P+8(y—x)
convergence velocity. For the parabolic case and special ini-

(A1)

tial conditions ¢ function) explicit expressions for the ve- , S
locity and the mean fitness are obtained. x( j A(Y)P(x,y)dy+B(x)P(x)
In Sec. Il algorithms for the simulating of the stochastic
processes were derived from the dynamical equations. For —[A(y)+B(x)]P. (A2)

the Darwin strategy a master equation description was cho-

sen. In the case of the Boltzmann strategy, a Langevin agh this equation the correlation between two searchers is in-
proach turned out to be more suitable. Theoretical results arduded, whereas the one-particle representation of the Dar-
nearly identical to the numerical simulation. Numeric inte-Win strategy does not realize such a correlation. To this end
gration of the PDE was necessary for the double well and thi/e neglect the correlation and make the approximation
results were also in accordance with the simulations. In sum-

mary, the relationship between optimization theory and P(x,y)=P(x)P(y); (A3)
guantum mechanics has been established. As an important
indication of this relationship we observe the well-known using 22— |f|=—f, 2B—|f|=f, and(f)=0, we obtain the

result that the stationary distribution of the Darwin strategyrisher-Eigen equation
is the ground state of a quantum-mechanical system of the
fithness F(x). This result, combined with the fact that the
Darwin strategy can be simulated by an evolutionary algo- i _ B . _

rithm, provides us also with a tool for calculating the ground ot P =(2A=[f})+2B-[f)P(X) =fP(x).
states of complex quantum-mechanical systems. (A4)
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