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Evolutionary strategies of optimization
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Evolutionary algorithms have proved to be a powerful tool for solving complex optimization problems. The
underlying physical and biological strategies can equally be described by a Schro¨dinger equation. The prop-
erties of the dynamics of optimization are encoded in the spectrum of the Hamiltonian. Analytic solutions and
convergence velocity of the dynamics are calculated and compared with simulations of the corresponding
algorithms. The connection between physical and biological strategies is analyzed. Mixing both strategies
creates a basic class of evolutionary algorithms improving robustness and velocity of optimization.
@S1063-651X~97!00407-8#

PACS number~s!: 05.40.1j, 05.90.1m, 03.65.Db
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I. INTRODUCTION

The idea of solving optimization problems by means
evolutionary principles is a noteworthy example demonst
ing the fruitful confluence and interaction of various fields
science. Optimization is not only an important technologi
question, it is a fundamental principle governing the dyna
cal laws of physics and the processes of biological evolut
Knowledge of natural systems becomes a valuable sourc
inspiration for constructing and investigating algorithm
solving very complex optimization problems at a new tec
nological level.

The past decade, in particular, was marked by a g
development of optimization algorithms that may be colle
tively referred to asevolutionary algorithms, which consist
of simulated annealing@1#, evolution strategies@2#, genetic
algorithms @3#, evolutionary programming@4#, and genetic
programming@5#.

The rich variety of representatives seems to suggest
there is a long way to go to unification, but in fact, all
these algorithms are characterized by two general dyna
properties. The dynamics of an evolutionary algorithm m
be regarded by a motionx(t) in a search spaceX visiting all
global optima of a functionF(x) on X, and we can realize
that the motionx(t) is not deterministic: there is a stochas
generation ofalternativesof further motion. The realization
of one of them takes place by anassessmentrelated to
F(x). All evolutionary algorithms realize the processes
generation and assessment of alternatives, i.e.,mutationand
selection. The stochastic nature of these algorithms requ
a probabilistic description.

The complete description of a stochastic system is gi
by the probability distributionP(x,t) of its statex at a time
t, characterizing the density of searchers of an ensemble
the probability to find one of them at (x,t). The dynamics of
P(x,t) is considered to be anoptimizationif any ~or nearly
any! initial distributionP(x,0) converges to a stationary dis
tribution P0(x)5 limt→`P(x,t) that is concentrated aroun
the global optimum ofF(x).

The evolutionary algorithms may be divided according
their physical or biological origin into two basic classe
Simulated annealing algorithms are motivated by thermo
namic systems minimizing the free energy and the station
561063-651X/97/56~1!/1171~10!/$10.00
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distribution P0(x) is the Boltzmann distribution. Therefor
we will call the strategy representing this class of algorith
Boltzmann strategy@6#. Nearly all other evolutionary algo
rithms use a selection scheme adopted from the natura
lection of biological systems. The class of algorithms us
Darwinian selection will be referred to asDarwin strategy
@6#.

In this article, an optimization problem shall be given b
the question of determination of optima~minima and
maxima! of a real-valued functionF:X→R, also called
fitness. The fitness function is a quality measure quantifyi
the goal of a given problem~e.g., optimizing the costs o
building a network!. Complex optimization problems have
high-dimensional search spaceX ~e.g., the space of a 24
points network consists of 1084 graphs, more than the
guessed number of particles in the Universe!, making the
application of classical optimization techniques infeasib
X may be discrete or continuous, but for the analytic desc
tion we assumeX5Rd and a continuous time. Then the dy
namics of an evolutionary strategy can be described b
differential equation.

At first sight there seems to be no connection between
Boltzmann and Darwin strategy. Nevertheless, the fact is
tonishing that both strategies can equally be described b
Schrödinger equation@7#. We will show that the spectrum o
the Hamiltonian given by the optimization problem dete
mines the properties of the evolutionary strategy. For unim
dal fitness landscapes we are able to calculate exact solu
to the optimization dynamics. To compare the results of
strategies with evolutionary algorithms we construct alg
rithms that nearly exactly realize the dynamics of the Bol
mann and Darwin strategies.

The unified description of both strategies by a Sch¨-
dinger equation leads to the fact that the Boltzmann strat
becomes a Darwinian one with a transformed fitness func
@8#. The properties of both strategies complement each o
on the same fitness landscape. Mixing the strategies ge
ates a different class of Evolutionary Algorithms, themixed
strategy, which shows a remarkable improvement in robu
ness and velocity of optimization@6–9#.

II. BOLTZMANN STRATEGY

The first and simplestevolutionary strategyis known
from literature as ‘‘simulated annealing.’’ This strategy w
1171 © 1997 The American Physical Society
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first discussed in the form of the Metropolis algorithm@10#.
Following Kirkpatrick et al. in @1#, we are interested in the
analogy between equilibrium statistical mechanics and
algorithm. If we simplify our investigation to the case of
fixed temperature then, according to@8#, the dynamics is
given by the Fokker-Planck equation

]

]t
P~xW ,t !5¹D•@¹P1b¹FP#5DnP1D¹~bP¹F !,

~1!

whereD is the ‘‘diffusion’’ constant,b is the reciprocal
temperature, andxW is the state vector.

The ansatz

P~xW ,t !5expF2
bF~x!

2 Gy~xW ,t !, ~2!

taken together with the separation of the time and space v
ablesy(xW ,t)5exp(2et)c(xW), leads to the eigenvalue equatio

Dnc~xW !2V~xW !c~xW !52ec~xW !, ~3!

wheree is the eigenvalue and

V~xW !5
b2

4
D¹F•¹F2

b

2
DnF ~4!

is the redefined fitnessV. This equation is known from quan
tum mechanics as the stationary Schro¨dinger equation. On
the assumption that the operator in Eq.~3! is bounded, we
obtain a discrete spectrum leading to the solution

P~xW ,t !5expF2
b

2
F~xW !G(

i50

`

cic i~xW !exp~2e i t !. ~5!

In @8# we discussed the necessary conditions for the con
gence of this sum. The expression for the equilibrium dis
bution

P0~xW !5c0exp@2bF~xW !# ~6!

corresponds to the eigenvaluee50. A complete discussion
of this fact including the construction of the Liapunov fun
tional is contained in@8#. Thus the equilibrium distribution is
concentrated around the optimum since the minimum
F(x) is related to the maximum ofP0(x). In the limit
t→` the distributionP(xW ,t) converges to the equilibrium
distribution and the strategy successfully terminates at a
tribution localized around the optimum. Consequently,
Boltzmann strategy fulfills the minimal requirement to be
evolutionary strategy.

As the first calculable case we consider the unimo
function

F~x!5Fmin1
1

2(
i51

d

ai~xW i2xW i
~0!!2. ~7!

For ai.0 we get the simple harmonic oscillator that
solved by separation of variables. With respect to the dim
sion of the search space the eigenfunctions are produc
is
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Hermitian polynomials. Apart from a constant, the same
sult is obtained in the caseai,0. A collection of formulas
can be found in the Appendix of@8#.

The velocity of an algorithm answers the important qu
tion of how fast the algorithm reaches a desired fitness va
or finds an optimum. We define a first velocityv (1) on the
fitness landscape and a second onevk

(2) in the kth direction
of the search space. The velocities are given by the t
derivative of the mean values of the fitnessF(xW ) and the
vectorxk , respectively. With respect to Eq.~1! we obtain

v ~1!52
d

dt
^F&5Db^¹F•¹F&2D^nF&, ~8!

^F&5
*P~x,t !F~x!dx

*P~x,t !dx
,

and

vk
~2!52

d

dt
^xk&5Db^¹xk•¹F&. ~9!

The velocityv (1) depends on the curvature and the gradi
of the fitness. In the special case~7! we are able to explicitly
calculate the velocities withai.0, i.e.,

v ~1!5
c2

bc0
e2exp~2e2t !, ~10!

vk
~2!5

c1

Abakc0
e1exp~2e1t !. ~11!

It is interesting to note that only the first two eigenvalues
important to the velocities and that both velocities go to z
in the limit t→`. The other caseai,0 produces a more
complicated but similar result~see@8#!. For initial distribu-
tion P(x,0)5d(x2x0) in which all searchers are concen
trated in one pointx0, we calculate the velocity

v ~1!5(
i51

d

aiD~baix0
221!exp~2aibD2t ! ~12!

and the mean fitness^F& as well as the squared mean fitne
variances2,

^F&5Fmin1(
i51

d
1

2b
~baix0

221!exp~2aibD2t !, ~13!

s2:5^F2&2^F&25
1

2 b2(
i51

d

~~2x0
2bai21!

3~e22Daibt2e24Daibt!112e22Daibt!, ~14!

which later on will be compared with simulations in Se
IVA.

III. DARWIN STRATEGY

In the following we will discuss a biological model o
evolution known as the Fisher-Eigen model. To illustrate t
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56 1173EVOLUTIONARY STRATEGIES OF OPTIMIZATION
model we switch to the chemical reaction picture. A searc
having a fixed fitness can be regarded as a speciesA and
another searcher having a different fitness as speciesC. Thus
the process of mutation is the reactionA→C described by a
diffusion term. Then the reproduction process is given

A→2A
F

with the fitnessF of A as a transition rate. The
selection pressure is realized by the demand that the num
of individuals in the population be constant. The reprod
tion and selection term was first introduced by Fisher@11#
and Eigen@12# to become known as the Fisher-Eigen equ
tion. If we add diffusion to the Fisher-Eigen equation a
take into account the minimization of the fitness functi
then the Darwin strategy is defined by

]

]t
P~xW ,t !5@^F&2F~xW !#P~xW ,t !1DnP~xW ,t !. ~15!

By using the ansatz

P~xW ,t !5expF E
0

t

^F&~ t8!dt8Gy~xW ,t ! ~16!

we obtain

]

]t
y~xW ,t !52Hy~xW ,t !5@Dn2F~xW !#y~xW ,t !. ~17!

The separation of time and space variab
y(xW ,t)5c(xW )exp(2et) reduces Eq.~17! to the stationary
Schrödinger equation

2e ic i~xW !5Dnc i~xW !2F~xW !c i~xW !, ~18!

where e i are the eigenvalues andc i(xW ) are the eigenfunc-
tions leading to the complete solution

y~xW ,t !5(
i
aie

2e i tc i~xW !. ~19!

The eigenvaluee0 of the Darwin strategy admits a nonze
value in contrast to the Boltzmann strategy. However, w
respect to the normalization of the solution we obtain o
relative eigenvaluese i2e0, reflecting the fact that a shift o
the fitness function should not influence the dynamics.
the quadratic fitness~7! havingai.0 the problem is exactly
solvable for any dimensiond and the solution is very simila
to the Boltzmann strategy. Forai,0 we obtain a different
problem known from scattering theory. Now we have to d
with the problem that the operatorH is unbounded and thu
the spectrum is continuous. We can repair this defect
restricting the search space to a compact subspace. In
tice the search space is always bounded and we can cho
natural compact subspace by the demand that the fit
function ~7! admits only positive values. This leads to th
restriction of the search space to the interval@2b,b# in each
direction, whereb5A2Fmax/uai u fulfills the positivity con-
dition. Further, we have to introduce the boundary conditio
for the operatorH defined on this compact search space. T
most natural choice is to let the solution vanish on
r
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boundary. Due to the boundary conditions an additional
striction appears and the spectrum of the operatorH is dis-
crete.

As in Sec. II we are interested in the velocities of t
strategy. In practice we need only the first velocityv (1),
which, with respect to the Darwin strategy~15!, is given by

v ~1!52
d

dt
^F&5^F2&2^F&22D^nF&. ~20!

The use of an ensemble of searchers has the great advan
that the velocityv (1) reflects the main properties of the stra
egy and this velocity can easily be calculated during
search process. Furthermore the knowledge of the magni
v (1) can be used to optimize the search parameters. In
first approximation we may suppose the velocity to be c
stantv (1)5v. For theD parameter we get

D5
^F2&2^F&2

^nF&
2

v

^nF&
.

Hence a value ofD below the critical value

Dcrit5
^F2&2^F&2

^nF&

still guarantees progress. Now we have to discuss the c
crete example of a quadratic fitness function~7!. Using the
general solution~19! together with the conditionai.0, we
obtain the expansion

v ~1!5S (
i51

d ADai
2 D 10c2c0e2e2~e22e0!t1O~e2~e42e2!t!.

~21!

On the basis of this velocity, the Darwin strategy can
compared with the Boltzmann strategy@8#.

For the initial distributionP(x,0)5d(x2x0) we obtain
simple explicit results for the velocity

v ~1!5(
i51

d

ADai

3
A2ai~x0! i2sinh~ tA2Dai !2AaiDcosh~ tA2Dai !

cosh3~ tA2Dai !
~22!

and for the expectation value of the fitness~7!

^F&5Fmin1(
i51

d S 12A2aiDtanh~ tA2aiD !

2
ai~x0! i

2

2cosh2~ tA2aiD !
D . ~23!

The comparison with the numerical results will be discuss
below.
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IV. SIMULATION OF THE STRATEGIES
USING STOCHASTIC ALGORITHMS

A. Description of the Boltzmann strategy
by Langevin equations

We shall begin with the simulation of the Boltzman
strategy~1! by using two different approaches. At first w
consider the transition probability

pxy5H 1 if F~y!.F~x!

expS 2
F~y!2F~x!

T D otherwise,
~24!

whereT is the temperature. By means of the standard the
of master equations@13# we deduce from this expression th
dynamics of the Boltzmann strategy~1!.

Alternatively, we can reproduce Eq.~1! by the strong cou-
pling between the Fokker-Planck and Langevin equation.
that purpose we simulate Brownian particles in the ov
damped case driven by the gradient of the fitness func
F(xW ) and the mutation is given by Gaussian white noise.
assumptions put together lead to the Langevin equation

d

dt
xW52Db¹F1A2Dj~ t !, ~25!

wherej(t) is the noise,D is the diffusion constant, andb is
the inverse of the temperature. The conditions on the n
are expressed by

^j~ t !&50,

^j~ t8!j~ t !&5d~ t82t !.

According to@13#, the behavior of Eq.~25! can be described
by the Fokker-Planck equation~1! in an equivalent way.

We prefer the second ansatz to realize the Boltzm
strategy~1! in the simulation. This simulation of the Lange
vin equation is a well-known problem in stochastics and
will use the discretization scheme

x~ t11!5x~ t !1A2DDtj~ t !

2Db
F„x~ t !1Dx…2F„x~ t !2Dx…

2Dx
Dt, ~26!

whereDt is the time step andDx is the box length.
Furthermore, we have to compare the dynamics of

algorithm with the analytical solution to the Boltzmann str
egy ~1!. Two important classes of fitness landscapes
given by uni- and multimodal functions. Thus we consid
the parabolaF(x)5x2 with one minimum atx50 and the
double well F(x)50.1610.0278x2(0.166 67x20.9)
3(0.166 67x10.8) with two minima atx'23.4,3.8. One of
the most interesting pieces of information is the time evo
tion of the probability distribution pictured in Fig. 1 for mini
mization of the parabola. This figure shows the distribut
of the populationN510 000 at different times. Figure 1~a!
visualizes the behavior at the temperatureT50.1 (b510),
whereas 1~b! represents the distribution forT51. According
to Secs. II and III, the investigation of the mean fitness is k
information of the dynamics in order to understand the c
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vergence process to the optimum. Thus we compare the
oretical results and the simulations of the mean fitness^F&
and the mean fitness variance^F2&2^F&2 as shown in Fig. 2.
This nearly exact agreement between simulations and th

FIG. 1. Time evolution of the distributionP(x,t) of
N510 000 Brownian particles simulating the Boltzmann strate
Fitness function: parabola,Dt50.01, Dx50.01, D50.1, and~a!
b510 and~b! b51.

FIG. 2. Theoretical~PDE! and simulated time evolution of mea
fitness and variance of the Boltzmann strategy. Fitness funct
parabola,b51,2,10, and other parameters as in Fig. 1.



tio
la

e is
xi-
t the
ith
tial
e-
ion
es
ion
fit-

lue.
iza-
at-
nly.
by
this

rtain
ess
-

the

ith
us-

ider

g

56 1175EVOLUTIONARY STRATEGIES OF OPTIMIZATION
can easily be deduced from Eqs.~13! and ~14! using the
parametersa52,D50.1,x0525, and the correspondingb
values. Only for low temperatures do we obtain an aberra
for the mean fitness variance explained by the low popu
tion size.

FIG. 3. Time evolution of the distributionP(x,t) of
N510 000 Brownian particles simulating the Boltzmann strate
compared with the theoretical solutions~PDE!. Fitness function:
double well,Dt50.1, Dx50.01,D50.1, and~a! b51 and~b! b
520.
n
-

The next more complicated type of a fitness landscap
the double well having two minima separated by a ma
mum. We use the same parameters as before and star
ensemble at the maximum. To compare the simulation w
the theoretical solutions we integrate the partial differen
equation~PDE! ~1! numerically. Figure 3 shows good agre
ment between the simulated and theoretical distribut
P(x,t) for different temperatures. For high temperatur
(b51) the searchers are spread out without localizat
around the minima, which leads to an increasing mean
ness~Fig. 4!. Low temperatures (b520) force the concen-
tration of searchers to the nearest minima~Fig. 3! and the
mean fitness decreases monotonically to a stationary va

This temperature dependence of the behavior of local
tion in finite times leads to the fact that the Boltzmann str
egy carries out an efficient search at low temperatures o
The tendency to get trapped in local minima increases
cooling. The simulated annealing approach addresses
problem by means of a cooling scheduleT(t), which care-
fully decreases temperature. But the usefulness of a ce
schedule strongly depends on the concrete form of the fitn
landscape@14#. Another way to reduce sticking in local op
tima is offered by mixing strategies~Sec. V! with the advan-
tage that there is no need to introduce exogen parts of
dynamics such as a cooling schedule.

B. Description of the Darwin strategy
by reaction-diffusion algorithms

In this section we simulate the Darwin strategy~15! using
a stochastic algorithm to compare the theoretical model w
an algorithm accessible for application. Similar to the disc
sion at the beginning of Sec. III we introduce speciesx and
y having fitness valuesF(x) andF(y), respectively. To re-
alize the reproduction and selection processes we cons
the transitions

~x,y! →
u f ~x!uH ~x,x!, f ~x!.0

~y,y!, f ~x!,0,
~27!

with the fitness proportional rate

y

n
y.
FIG. 4. Simulated time evolution of the mea
fitness and variance of the Boltzmann strateg
Fitness function: double well,b51,5,20, and
other parameter as in Fig. 3.
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f ~x!:5^F&2F~x!, ~28!

leading to the obvious property of population size conser
tion. The solution to Eq.~15! is a distribution of searcher
over the continuous search space. To compare the algor
and the partial differential equation~15! we have to conside
the dynamics of the densityP(x) of the speciesx with re-
spect to the transitions~27! described by the master equatio
In the following we consider only reactions of a pair of sp
cies, which is also used in the computer algorithm later
This two-particle picture of the selection and reproduct
processes was suggested by Schimansky-Geier@15# and we
thank him for many discussions to clarify the questions.
establish the master equation we have to divide the tra
tions ~27! into two parts, i.e., lossW2 and gainW1. We
express the transition ratesW2 andW1 by

W1~x,x́;y!:5W„~ x́,y!→~x,y!…,

W2~ x́,x;y!:5W„~x,y!→~ x́,y!…, ~29!

leading to the master equation for the two speciesx andy,

]

]t
P~x,y,t !5E @W1~x,x́;y!P~ x́,y!

2W2~ x́,x;y!P~x,y!#dx́

1E @W1~y,ý;x!P~x,ý!

2W2~ ý,y;x!P~x,y!#dý. ~30!

Now we have to determine the transition rates with respec
the processes of reproduction and selection. For that pur
we introduce intermediate states denoted byx́. By integration
over these states we can deduce the correct processes
the rates we assume

W1~x,x́;y!:5W1
„~ x́,y!→~x,y!…

5d~x2y!@ u f ~ x́!uQ„2 f ~ x́!…1 f ~y!Q„f ~y!…#,

~31!

W2~ x́,x;y!:5W2
„~x,y!→~ x́,y!…

5d~ x́2y!@ u f ~x!uQ~2 f ~x!!1 f ~y!Q„f ~y!…#,

where the other rates can be derived by the interchang
x andy. The complete derivation of the Fisher-Eigen equ
tion

]

]t
P~x,t !5@^F&2F~x!#P~x!, ~32!

with respect to the master equation~30!, can be found in the
Appendix. By adding a symmetric transition rateWD with

WD~x,y!5WD~y,x!5WD~y;r !, r5x2y

to the loss and gain terms, we obtain the mutation proc
leading to the Laplacian term in Eq.~15!. According to@13#
~p. 214!, the master equation
-
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]

]t
P~x,t !5E WD~x2r ;r !P~x2r ,t !dr

2P~x,t !E WD~x;2r !dr ~33!

describes a process with symmetric transition rates. Ass
ing that only small jumps occur and that the soluti
P(x,t) also varies slowly withx, it is possible to deal with
the shift fromx to x2r in the first integral in Eq.~33! by
means of a Taylor expansion up to second order where
term with the first derivative is neglected by the symmetry
WD . If we set

2D5E r 2WD~x;r !dr5const

then the diffusion equation is obtained@13#. With respect to
the assumption of sufficiently small stepsr we have unified
the mutation and the selection process in one equation.
we note that the requirement of small stepsr for the mutation
process leads to a different realization of mutation and se
tion in the algorithm. Furthermore, it is to be noted that t
diagonal termW(x,x) of the rates can be chosen arbitraril

The simulation of the master equation is a well-know
problem in the theory of stochastic processes. We use
waiting time distribution of Eq.~30! to establish a stable an
effective algorithm of the evolutionary process@16–18#. The
main idea of the algorithm is very simple. The dynamics
the process can be split into two parts. At first the populat
remains unchanged for a certain time, the waiting timet, at
the current state. Aftert time steps the population is turne
into a new state. If we know the distribution of the waitin
time t, we only need to simulate the effective changes of
system representing the master equation. Indeed, this is
actly the method of evolutionary algorithms to execute
evolutionary process. But the common simulation scheme
evolutionary algorithms pays no attention to the time scale
the process, resulting in the inability to compare the dyna
cal behavior of the evolutionary algorithm with analytic
results of the Darwin strategy.

In fact, it is easy to extend the common simulatio
scheme to an algorithm respecting the real time scale of
evolutionary process. Solving thefirst passage timeproblem
of Eq. ~30! with initial and boundary conditions

P~x,0!5dxx́ , P~x,t !50, xÞ x́, ~34!

we obtain the waiting time distribution@19,20#

p~t!5
]

]t
@12P~x,t!#5

1

^t&
expS 2

t

^t& D . ~35!

The waiting time between two changes is exponential d
tributed and̂ t& is the mean waiting time.

The mutation term of the Darwin strategy describes a d
fusion process. To simulate such a process we have to g
antee that one mutation stepr is small in comparison with
the size ofP(x,t).0. The mean value of a diffusion step
^r &5A2DDt; thus we must choose the maximal time sca
Dtmax.Dt of the mutation step in such a manner thatr
remains sufficiently small. Diffusion is a continuous proce
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56 1177EVOLUTIONARY STRATEGIES OF OPTIMIZATION
whereas selection is discrete. Thus we execute in every
a mutation and selection having the rate^F&2F(x). To en-
sure that the mutation stepr is small we set the mean waitin
time between two steps of algorithm̂t&,Dtmax. The sto-
chastic dynamics of diffusion is given by a Gaussian mu
tion

x~ t8!5x~ t !1A2D~ t2t8!j, ~36!

with the normal distributed random accessionj. The selec-
tion process can be modeled by a birth-death process
randomly chosen individual x dies if the rate
Ws5^F&2F(x) is negative and will be reduplicated ifWs is
positive@21#. To keep the population sizeN constant anothe
randomly chosen opponenty must be reduplicated or die
This process can be considered as tournament selection
ing the rateuWsu.

The selection step will be executed if a uniform rando
number is

z,Ws , zPS 0, 1^t& D ,
with a mean waiting timêt& fulfilling

^t&,minS 1

max~Ws!
,DtmaxD .

The choice of the fixed value max(Ws) instead ofWs syn-
chronizes both time scales 1/max(Ws) and Dtmax. Such a
choice is equivalent to the introduction of diagonal ter
into the rates that leave the master equation unchanged
us summarize one generation of the algorithm by the follo
ing scheme using uniform random numbersz, the exponen-
tially distributed numbert, and the normally distributed
numberj for N steps:

t85t1
^t&
N

t,

i5z1P$1, . . . ,N%,

x~ t8!5x~ t !1A2D~ t2t8!j,

z2PS 0, 1^t& D if z2,uWs5F~x!2^F&u,

j5z3P$1, . . . ,i21,i11, . . . ,N%,

y5x, Ws.0

x5y, Ws,0.

Now we compare the dynamics of this algorithm with t
analytical solution to the Darwin strategy~15! for two dif-
ferent fitness functions: the parabolaf (x)5x2 and the
double well f (x)50.1610.0278x2(0.166 67x
20.9)(0.166 67x10.8), which are equivalent to the case
the Boltzmann strategy. Of course we use the same cha
terization of the strategy explained in Sec. IV A. The tim
evolution of the probability distribution of the population
represented in Fig. 5. The exact solution to the Darwin st
ep
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av-

s
et
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c-

t-

egy ~PDE! is indicated by the solid line. The circles, square
and crosses denote the density of the populat
(N510 000) at different times. Without any doubt, the ev
lutionary algorithm realizes nearly exactly the dynamics
the Darwin strategy. Also, Fig. 6 emphasizes this fact for
time dependence of the mean fitness of the population.
small population sizes (N,1000) the stochastic fluctuation
are still visible and go to zero for larger populations. T
Darwin strategy describes the dynamics of the populat
without taking into account fluctuations, but we can see t
a population ofN510 individuals shows already a behavi
quite similar to the Darwin strategy in the case of a parabo
fitness function.

For the multimodal fitness landscape of the double w
we also found good agreement between the solution to
Darwin strategy~PDE! and the simulation ofN510 000 in-
dividuals ~Fig. 7!. ~The solution to the PDE was found b
numerical integration.! The mean fitness~Fig. 8! shows
slightly more fluctuations, but the main features of the PD
and the evolutionary algorithm are still the same.

FIG. 5. Time evolution of the distributionP(x,t) of
N510 000 individuals simulating the Darwin strategy compar
with the theoretical solutions~PDE!. Fitness function:x2, D50.1.

FIG. 6. Theoretical~PDE! and simulated time evolution of the
mean fitness of the Darwin strategy. Fitness function:x2.
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The parabola and double well represent the main feat
of a general fitness landscape: the existence of local op
and the transition between two optima. For both cases
could find good agreement between the dynamics of the D
win strategy and its stochastic realization: the evolution
algorithm. Within the range of this agreement we are able
say that the analytical results found for the Darwin strate
are valid for the evolutionary algorithm too. In this sense
Darwin strategy becomes an important tool for the analyt
investigation of evolutionary algorithms.

V. MIXING OF STRATEGIES

In our paper@8# we analyzed the Boltzmann strategy
well as the Darwin strategy in detail in order to show th
with respect to the velocities, the strategies have oppositio
behavior. Because of their oppositional advantages and
advantages it seems desirable to mix them. Furthermore
dynamic equations defining both strategies contain a c
mon termDnP. We define the dynamics of a mixed stra
egy by

FIG. 7. Time evolution of the distributionP(x,t) of
N510 000 individuals simulating the Darwin strategy compar
with the theoretical solutions~PDE!. Fitness function: double well
D50.1.

FIG. 8. Theoretical~PDE! and simulated time evolution of th
mean fitness of the Darwin strategy. Fitness function: double w
es
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]

]t
P~xW ,t !5~D11D2!nP~xW ,t !1bD2¹~P¹F ! ~37!

1g@^F&2F~xW !#P~xW ,t !. ~38!

For g50 this dynamics reduces to a pure Boltzmann str
egy and forb50 we obtain a Darwin strategy. In the case
D2b51 andD11D25D the corresponding equation can b
interpreted as a mixing of a gradient strategy and a Dar
strategy. We found in the simulations that this mixing is
effective and fast algorithm. In the following we simplify th
equation by the settingsD25D andD150. The mixed case
may be treated by means of the ansatz

P~xW ,t !5expFgE
0

t

^F&dt82
1

2
bF~xW !Gy~xW ,t !, ~39!

leading to

d

dt
y~xW ,t !5@Dn2W~xW ;b,g!#y~xW ,t !, ~40!

W~xW ;b,g!5gF2
Db

2
nF1

Db2

4
~“F !•~“F !,

W~xW ;b50,g51!5F~xW !,

W~xW ;b,g50!5V~xW !,

where the explicit solution is given by the same express
~19! with the eigenfunctions of the problem

05Dnc i~xW !1@e i2W~xW ;b,g!#c i~xW !. ~41!

The linearity of the differential equation leads to simple r
lations between the solutions and velocities. For exam
the velocity for the Boltzmann strategy can be added to
velocity of the Darwin strategy with respect to the consta
g to obtain the velocity of the mixed strategy

v ~1!52
d

dt
^F&5g„^F2&2^F&2…1Db^“F•“F&2D^nF&.

~42!

In this way the critical value ofD is given by

Dcrit5
g~^F2&2^F&2!

^nF&2b^“F•“F&
,

which still guarantees progress in the mean forD values
below this critical valueDcrit . Now the magnitudeDcrit can
be used to control the strategy during the evolutionary p
cess to adapt the parametersb andg.

The mixed strategy is a well-suited tool for multicriterio
optimization. Let us assume that the fitness function cons
of two contradictory partsF(x)5F1(x)1F2(x) and that
F1(x) is a more local requirement. One example of such
situation is the network optimization~see@9#!, whereF1(x)
would be the detour andF2(x) the total length of the paths
Another example is the ‘‘democratic’’ representation intr
duced by Dittes@22#. A well-designed strategy may use th
Boltzmann strategy for local optimization ofF1(x) and the
Darwin strategy for global optimization ofF(x). By usingll.
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56 1179EVOLUTIONARY STRATEGIES OF OPTIMIZATION
the mixed strategy one is able to respect the structure of
local and global requirements of multicriterion problems.

Mixing not only improves the convergence velocity b
also reduces the tendency of the Boltzmann strategy to
caught in local minima. Since the Darwin strategy is able
escape from local minima by a tunnelinglike process and
Boltzmann strategy works very well on landscapes with l
curvature, the mixed strategy proceeds by an efficient se
in both regions of the landscape@8#. To obtain these advan
tages we have to choose the coefficientsg andb appropri-
ately. In general, the optimal search requiresb.0 and
g.0. In summary, adding some amount of the ‘‘comp
mentary’’ strategy is in most cases recommended. This
already been found out empirically in an earlier work@7,6#.

VI. SUMMARY AND CONCLUSION

The marvelous fact that optimization strategies adop
from physical and biological systems allow a unified descr
tion by a Schro¨dinger equation makes the assumption o
fundamental meaning of optimization principles appear i
different light. This remarkable relationship between optim
zation and the Schro¨dinger equation makes it feasible
study the behavior of both strategies in detail. The diff
ences of the Boltzmann and Darwin strategy can be un
stood by a transformation~4! of the fitness. Hence an inves
tigation of differences and similarities was simply realiz
@8#. A main characteristic of the strategy is given by t
convergence velocity. For the parabolic case and special
tial conditions (d function! explicit expressions for the ve
locity and the mean fitness are obtained.

In Sec. II algorithms for the simulating of the stochas
processes were derived from the dynamical equations.
the Darwin strategy a master equation description was c
sen. In the case of the Boltzmann strategy, a Langevin
proach turned out to be more suitable. Theoretical results
nearly identical to the numerical simulation. Numeric int
gration of the PDE was necessary for the double well and
results were also in accordance with the simulations. In s
mary, the relationship between optimization theory a
quantum mechanics has been established. As an impo
indication of this relationship we observe the well-know
result that the stationary distribution of the Darwin strate
is the ground state of a quantum-mechanical system of
fitnessF(x). This result, combined with the fact that th
Darwin strategy can be simulated by an evolutionary al
rithm, provides us also with a tool for calculating the grou
states of complex quantum-mechanical systems.
ce
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APPENDIX A: DERIVATION OF THE FISHER-EIGEN
EQUATION

We consider the master equation~30!. If we assume tran-
sition rates related to the transitions~27! for the gain and loss
~31! we obtain the selection and the reproduction term of
Darwin strategy. Together with the useful abbreviations a
the one-particle distributionP(x)

A~x!:5u f ~x!uQ„2 f ~x!…, B~x!:5 f ~x!Q„f ~x!…,

P~x!5E P~x,y!dy, ~A1!

the master equation~30! is obtained as

]

]t
P~x,y,t !5d~x2y!S E A~ x́!P~ x́,y!dx́1B~y!P~y! D

2@A~x!1B~y!#P1d~y2x!

3S E A~ ý!P~x,ý!dý1B~x!P~x! D
2@A~y!1B~x!#P. ~A2!

In this equation the correlation between two searchers is
cluded, whereas the one-particle representation of the D
win strategy does not realize such a correlation. To this
we neglect the correlation and make the approximation

P~x,y!5P~x!P~y!; ~A3!

using 2A2u f u52 f , 2B2u f u5 f , and^ f &50, we obtain the
Fisher-Eigen equation

]

]t
P~x,t !5~^2A2u f u&12B2u f u!P~x!5 f P~x!.

~A4!
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